

OCR Computer Science AS Level

2.3.1 Searching Algorithms
Advanced Notes

www.pmt.education

Specification:

● Standard algorithms
○ Binary search
○ Linear search

www.pmt.education

Searching Algorithms

Searching algorithms are used to find a specified element within a data structure. For
example, a searching algorithm could be used to find the name “Alan Turing” in an array of
names.

Numerous different searching algorithms exist, each of which is suited to a particular data
structure of format of data. Different searching algorithms are used depending on each
individual scenario.

Binary Search
The binary search algorithm can only be applied on sorted data and works by finding the
middle element in a list of data before deciding which side of the data the desired element
is to be found in. The unwanted half of the data is then discarded and the process
repeated until the desired element is found or until it is known that the desired element
doesn’t exist in the data.

Pseudocode for binary search is shown below.

A = Array of data
x = Desired element

low = 0
high = A.length -1
while low <= high:

mid = (low + high) / 2
if A[mid] == x:

return mid
else if A[mid] > x:

high = mid -1
else:

low = mid + 1
endif

endwhile
return “Not found in data”

With each iteration of binary search, half of the input data is discarded, making the
algorithm very efficient. In fact, the time complexity of binary search is O(log n).

www.pmt.education

Example 1
Find the location of “Dylan” in the data below.

0 1 2 3 4 5 6 7 8

Alice Bob Charlie Dylan Ellie Franz Gabbie Hugo Ingrid

To start with, our values for high and low and 8 and 0 respectively.
The first step is to find the middle position. In this case, it’s (0 + 8) / 2 = 4.
Next we inspect the data in position 4: Ellie. This is higher than the desired data and so we
discard elements 4-8, setting high as 3.

0 1 2 3 4 5 6 7 8

Alice Bob Charlie Dylan Ellie Franz Gabbie Hugo Ingrid

Again, we calculate the value of the middle position. This time it’s (0 + 3) / 2 = 2
(We have to round to the nearest whole number).
Inspecting the data at this position we find Charlie, which is lower than the data we’re
looking for. We now set low to 3, discarding items 0 to 2.

0 1 2 3 4 5 6 7 8

Alice Bob Charlie Dylan Ellie Franz Gabbie Hugo Ingrid

Calculating the middle position, we have (3 + 3) / 2 = 3.
Inspecting the item in position 3, we find Dylan. This is our desired data and so we return
the position 3.

www.pmt.education

Example 2
Find the location of “Hattie” in the data below.

0 1 2 3 4 5 6 7 8

Alice Bob Charlie Dylan Ellie Franz Gabbie Hugo Ingrid

As before, we calculate the middle position and find Ellie, which is lower than our desired
data so we set low to 5 and discard elements 0-4.

0 1 2 3 4 5 6 7 8

Alice Bob Charlie Dylan Ellie Franz Gabbie Hugo Ingrid

Calculating the middle position, we have (5 + 8) / 2 = 7.
The data in position 7 is Hugo, higher than our desired data, so we set high to 6.

0 1 2 3 4 5 6 7 8

Alice Bob Charlie Dylan Ellie Franz Gabbie Hugo Ingrid

Calculating the middle position, we have (5 + 6) / 2 = 6.
Item 6, Gabbie, is lower than our desired value and so we set low to 7.

At this point, our value for low is 7 and our value for high is 6. This breaks the condition of
low being less than or equal to high, and so breaks the while loop in the pseudocode. The
algorithm then returns “Not found in data” before terminating.

Example 3
Look at how the algorithm finds the letter R in the first 20 characters of the alphabet. It’s
clear from this example that the algorithm halves the remaining data to be searched with
each iteration, gradually reducing the size of the problem to be solved.

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

www.pmt.education

Linear Search
Linear search is the most basic searching algorithm. You can think of it as going along a
bookshelf one by one until you come across the book you’re looking for. Sometimes the
algorithm gets lucky and finds the desired element almost immediately, while in other
situations, the algorithm is incredibly inefficient. It’s time complexity is O(n).

There’s a lot of pot luck involved with linear search, but it’s incredibly easy to implement .
Unlike binary search, linear search doesn’t require the data to be sorted.

A = Array of data
x = Desired element

i = 0
while i < A.length:

if A[i] == x:
return i

else:
i = i + 1

endif
endwhile
return “Not found in data”

Example 1
Find the position of Apple in the data.

0 1 2 3 4

Banana Orange Apple Kiwi Mango

First we inspect position 0, and find Banana. Not the element we’re after.

0 1 2 3 4

Banana Orange Apple Kiwi Mango

Next we inspect position 1, finding Orange. Again, not what we’re looking for.

0 1 2 3 4

Banana Orange Apple Kiwi Mango

Next we look at position 2 and find Apple, this is the data we’re looking for and so the
algorithm returns 2 and terminates.

www.pmt.education

Example 2
Look at how this algorithm finds the letter R in the first 20 characters of the alphabet and
compare it to binary search above. It’s clear from this example that the algorithm is much
less efficient than binary search, particularly when the search value is towards the end of
the data to be searched.

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

A B C D E F G H I J K L M N O P Q R S T

www.pmt.education

